

25.09.2020 public 1/12

openPASS / World_OSI
Setup guide

September 25, 2020

Contents

1 Document History ... 2

2 Introduction ... 2

3 Prerequisites .. 3

4 Dependency installation guide .. 3

4.1 MinGW ... 4

4.2 CMake .. 4

4.3 Protobuf .. 4

4.4 Open Simulation Interface .. 5

4.5 boost .. 6

4.6 Google Test and Google Mock .. 6

4.7 Modelon FMI Library .. 7

5 Compiling openPASS ... 8

5.1 Using qmake ... 8

5.2 Using CMake ... 9

6 Simulation ..10

7 References ...12

25.09.2020 public 2/12 2/12

1 Document History

Version Description of the changes Author Date

0.9 First tracked version Reinhard Biegel 25.11.2019

1.0 Extension of the Compile Core chapter Arun Das 12.12.2019

1.1 Added list of third party libraries, Link to OSI Repo Arun Das 14.01.2020

1.2 Added FMI Library to dependency list and dependency

installation guide

Reinhard Biegel 24.02.2020

1.3 Updated OSI commit reference Reinhard Biegel 16.07.2020

1.4 Updated Introduction chapter

Updated Prerequisites chapter

Updated dependency versions

Updated FMI Library patch for Linux compatibility

Corrected FMI Library CMake parameter

Updated OSI build instructions

Added CMake instructions

Added information about protobuf Arena allocation

Reinhard Biegel 11.09.2020

1.5 Added short explanation of proto files

Point to openPASS master branch instead of servant

Show example file system structure for dependencies

Clarify boost compilation is needed

Minor corrections of example paths

Reinhard Biegel 25.09.2020

2 Introduction

The World_OSI provides an implementation of the WorldInterface using Open Simulation Interface (OSI) as a

“backend storage” [1]. OSI already provides data structures for representation of various objects in traffic

simulation environments. As these objects are specified rather sensor centric, the World_OSI module holds

additional data that is not stored inside of OSI objects. The currently supported OSI version is 3.2.0. As OSI

and openPASS itself are constantly being developed, it is also possible to use experimental OSI versions.

This is required for using the Algorithm_FmuWrapper component and OSMP FMUs, which are utilizing

TrafficUpdate and TrafficCommand messages not yet defined in standard OSI. See Open Simulation

Interface in the chapter describing the dependency installations.

To allow unit-testing of the implementation, an additional software layer (WorldData) has been introduced

on top of OSI, whose classes represent the objects needed in the simulator’s world. The OSI objects are

instantiated there. An architectural diagram showing WorldData and its interactions is currently not

available.

Another benefit of the additional WorldData layer is keeping the area of contact to the data backend small,

to allow easy adaption if OSI switches from protobuf to another storage technology (open discussion).

The current use of protobuf provides easy serialization and deserialization of all stored data out-of-the-box.

25.09.2020 public 3/12 3/12

3 Prerequisites

You’ll find the openPASS sources in Eclipse Gerrit [10]. Please note to check out the master branch, where

the most stable openPASS code is available. Of course, associated changes on Gerrit are also an option. For

the OSI world demonstration an additional project file OpenPASS_OSI_UseCase.pro has been added,

which can be opened in QtCreator IDE, or directly be built using qmake on the command line. Recently,

CMake project files have been added as well. They might be used as a replacement of the QMake project

files, but support for old components is not available (Basic use case).

It is recommended to use a short path for the source code checkout, due to limitations in the

MinGW/Windows setup. If you ever come across compilation errors regarding files not being found, you

might have run into problems with path length restrictions. It is advisable to map the repository checkout

directory to a drive letter to achieve the shortest path possible. You can use the subst command to

accomplish that[2].

Before being able to compile and run the World_OSI, make sure to have all dependencies installed.

World_OSI has been developed on Linux x86_64 using Qt 5.12.3, gcc 7.1.0, 7.3.0, 8.1.0 and 9.3.0. On

Windows systems a MinGW environment with the same compiler versions up to 8.1.0 has been used. There

are no known issues regarding different gcc versions.

To summarize, openPASS with World_OSI has these dependencies:

- MinGW gcc environment (Windows, tested gcc versions are 7.1.0, 7.3.0 and 8.1.0, 64-bit)

- Qt 5.12.3 (incl. QtCreator IDE and qmake build system)

- Open Simulation Interface (OSI) 3.2.0

- Google Protobuf 3.11.4

- CMake 3.9.4

- boost library 1.72.0

o algorithm

o math

o geometry

o filesystem

o system (header only since 1.69.0)

- Google Test / Google Mock 1.10.0

- Modelon FMILibrary 2.0.3 (if using Algorithm_FmuWrapper)

- ccache (an version) is recommended, but optional

NOTE: Please stick to the paths as given by this tutorial and the source code – unless you’re an expert. Only

if the default paths are used, compatibility with the GUI can be guaranteed.

4 Dependency installation guide

The World_OSI module introduces additional third-party dependency on the OSI library, and as a

consequence on Google protobuffers. Furthermore, the boost (geometry) library is required to compile and

run World_OSI [6]. Other dependencies have to be set up for the build environment itself.

Note, that the expected folder structure of third-party dependencies is different for qmake and CMake

builds of openPASS. If preparing dependencies for qmake, all files have to be installed in a single directory

(which in turn has a include and lib subfolder). When building openPASS using CMake, this requirement

doesn’t hold true anymore. See Using CMake.

25.09.2020 public 4/12 4/12

4.1 MinGW

An installation for 64-bit MinGW environments is provided at [9]. You can download a generic installer

binary, which will let you select different Versions of MinGW. Latest tested setup is x86_64-8.1.0-posix-

seh-rt_v6-rev0.

4.2 CMake

For compilation of protobuf and OSI, the CMake build system is required. Please download and install a

binary distribution of CMake [5]. Version 3.9.4 has been used during testing. Please feel free to try a more

recent version, but note that issues with newer versions have already been reported.

4.3 Protobuf

If not already installed on the system, the protobuf library and headers have to be built prior to being able

to compile OSI. Protobuf sources are located at [4]. This guide will give some instructions to compile version

3.11.4, but any other version should be compatible (including 2.x).

As most users seem to work on Windows environments, the following instructions will target these systems.

1. Download protobuf-cpp-3.11.4.zip and extract the archive. We will use

C:\OpenPASS\thirdParty\sources as target directory.

2. Open a command line with MinGW environment at the extraction directory

3. Create the build directory

> cd cmake
> mkdir build

> cd build

4. Run CMake (tests are disabled here due to some compiler warnings being treated as errors, may

vary with compiler version)

> cmake -G “MinGW Makefiles” -DCMAKE_BUILD_TYPE=Release

 -DCMAKE_INSTALL_PREFIX=C:/OpenPASS/thirdParty

 -Dprotobuf_BUILD_SHARED_LIBS=ON

 -Dprotobuf_BUILD_TESTS=OFF ..

5. Compilation

> mingw32-make -j3

6. Installation

> mingw32-make install

7. Final steps

a. Copy the MinGW runtime libraries from the MinGW installation directory to the

thirdParty/bin directory (libgcc_s_seh-1.dll, libwinpthread-1.dll and

libstdc++6.dll). This allows running the protobuf compiler (protoc.exe) outside of

a full MinGW environment.

25.09.2020 public 5/12 5/12

b. Copy the libprotobuf.dll from bin to lib subfolder

4.4 Open Simulation Interface

The OSI project is hosted on GitHub. Please check out the OSI sources tagged as v3.2.0 from [1].

OSI uses protobuf to describe data structures in a platform independent way. This is accomplished by using

*.proto files. When building OSI, its proto files will be converted into C++ headers and sources. The sources

are then compiled into a library. openPASS uses the generated headers to interface this library.

openPASS supports protobuf Arena allocation [3]. This feature is enabled by specifying a parameter during

build (see Compiling openPASS). In addition, OSI has to be Arena-enabled as well. This is achieved by adding

“option cc_enable_arenas = true;” to all OSI proto files before compilation.

We will use C:\OpenPASS\thirdParty\sources as target directory. Compile OSI using the following commands

executed from the source directory.

1. Create build directory

> mkdir build

> cd build

2. Run CMake. As I could not make CMake find protobuf in the custom installation directory, we

specify the paths manually here.

> cmake -G “MinGW Makefiles” -DCMAKE_BUILD_TYPE=Release

 -DCMAKE_INSTALL_PREFIX=C:/OpenPASS/thirdParty

 -DProtobuf_INCLUDE_DIR=C:/OpenPASS/thirdParty/include

 -DProtobuf_PROTOC_EXECUTABLE=C:/OpenPASS/thirdParty/bin/protoc.exe

 -DProtobuf_LIBRARIES=C:/OpenPASS/thirdParty/lib ..

3. Adding linker flags for protobuf

Edit the file C:\OpenPASS\thirdParty\sources\open-simulation-
interface\build\CMakeFiles\open_simulation_interface.dir\linklibs.rsp

Add “-LC:/OpenPASS/thirdParty/lib -lprotobuf” to the end of the line.

If anybody knows how to avoid this step, please drop a note.

4. Compilation

> mingw32-make -j3

5. Installation

> mingw32-make install

6. Copy libopen_simulation_interface.dll from lib/osi3 subfolder to lib

The OSI class documentation is part of the source code and can be compiled using Doxygen. Instructions

are located in the OSI Readme.md. A Pre-compiled version is located here:

https://opensimulationinterface.github.io/open-simulation-interface/index.html. Note that this version of

the documentation doesn’t include the extensions from the openpass-trafficAgents branch.

https://opensimulationinterface.github.io/open-simulation-interface/index.html

25.09.2020 public 6/12 6/12

4.5 boost

Boost consists of multiple libraries, many of them being header-only [6]. At the moment, World_OSI only

makes use of the algorithm, math and geometry header-only-libraries. FMU Wrapper and tests have

dependencies on the boost filesystem library as well.

1. Download and extract boost from [7]. Boost version 1.72.0 was used during development of

World_OSI. Newer versions should be compatible, but have not been tested yet.

2. Extract downloaded archive to a temporary directory

3. Copy the boost subfolder to your thirdParty/include directory (when using qmake) or

thirdParty/boost/include (when using cmake).

4. If usage of the FMU Wrapper component is desired, boost filesystem has to be compiled (it looks

like boost binaries for MinGW are hard to find and MSVC builds are not compatible with MinGW).

Currently, we cannot provide detailed build instructions. Please refer to the documentation of the

boost package.

4.6 Google Test and Google Mock

For unit-testing, World_OSI and other modules make use of the gtest/gmock framework. Installation

requires cmake, just like protobuf, which was mentioned above.

1. Download a release from [8].

Version 1.10.0 has been used during development.

2. Extract the archive to a temporary directory

3. Open a MinGW shell at the extraction directory

4. Create the build directory

> mkdir build

> cd build

5. Run CMake

> cmake -G “MinGW Makefiles”

 -DCMAKE_INSTALL_PREFIX=C:/OpenPASS/thirdParty ..

6. Compilation

> mingw32-make

7. Installation

> mingw32-make install

25.09.2020 public 7/12 7/12

4.7 Modelon FMI Library

If the component Algorithm_FmuWrapper is to be used, the FMI Library is an additional dependency for

compiling and running openPASS. FMI Library uses the CMake build system and requires minor patching:

1. Download release 2.0.3 from [11]

2. Extract archive to a temporary directory

3. Open a MinGW shell at the extraction directory

4. Apply the patch below

(Algorithm_FmuWrapper uses code from FMU Compliance Checker [12], which has dependencies

on some additional symbols in FMI Library. These symbols will be made visible by adding

FMILIB_EXPORT to their declarations. On Linux platforms, FMU library loading needs modification.

This change doesn’t affect Windows platforms.)

diff --git a/src/Import/src/FMI1/fmi1_import_capi.c b/src/Import/src/FMI1/fmi1_import_capi.c

index 842c998..807cdae 100644

--- a/src/Import/src/FMI1/fmi1_import_capi.c

+++ b/src/Import/src/FMI1/fmi1_import_capi.c

@@ -67,18 +67,8 @@ jm_status_enu_t fmi1_import_create_dllfmu(fmi1_import_t* fmu, fmi1_callback_func

 return jm_status_error;

 }

- if(jm_portability_set_current_working_directory(dllDirPath) != jm_status_success) {

- jm_log_fatal(fmu->callbacks, module, "Could not change to the DLL directory %s", dllDirPath);

- if(ENOENT == errno)

- jm_log_fatal(fmu->callbacks, module, "The FMU contains no binary for this platform.");

- else

- jm_log_fatal(fmu->callbacks, module, "System error: %s", strerror(errno));

- }

- else {

- /* Allocate memory for the C-API struct */

- fmu -> capi = fmi1_capi_create_dllfmu(fmu->callbacks, dllFileName, modelIdentifier,

callBackFunctions, standard);

- }

-

+ /* Allocate memory for the C-API struct */

+ fmu -> capi = fmi1_capi_create_dllfmu(fmu->callbacks, dllFileName, modelIdentifier, callBackFunctions,

standard);

 /* Load the DLL handle */

 if (fmu -> capi) {

diff --git a/src/Import/src/FMI2/fmi2_import_capi.c b/src/Import/src/FMI2/fmi2_import_capi.c

index e794775..a2a68ba 100644

--- a/src/Import/src/FMI2/fmi2_import_capi.c

+++ b/src/Import/src/FMI2/fmi2_import_capi.c

@@ -88,18 +88,8 @@ jm_status_enu_t fmi2_import_create_dllfmu(fmi2_import_t* fmu, fmi2_fmu_kind_enu_

 callBackFunctions = &defaultCallbacks;

 }

- if(jm_portability_set_current_working_directory(dllDirPath) != jm_status_success) {

- jm_log_fatal(fmu->callbacks, module, "Could not change to the DLL directory %s", dllDirPath);

- if(ENOENT == errno)

- jm_log_fatal(fmu->callbacks, module, "The FMU contains no binary for this platform.");

- else

- jm_log_fatal(fmu->callbacks, module, "System error: %s", strerror(errno));

- }

- else {

- /* Allocate memory for the C-API struct */

- fmu -> capi = fmi2_capi_create_dllfmu(fmu->callbacks, dllFileName, modelIdentifier,

callBackFunctions, fmuKind);

- }

-

+ /* Allocate memory for the C-API struct */

+ fmu -> capi = fmi2_capi_create_dllfmu(fmu->callbacks, dllFileName, modelIdentifier, callBackFunctions,

fmuKind);

 /* Load the DLL handle */

 if (fmu -> capi) {

diff --git a/src/Util/include/JM/jm_portability.h b/src/Util/include/JM/jm_portability.h

index 82e472a..3e50603 100644

--- a/src/Util/include/JM/jm_portability.h

+++ b/src/Util/include/JM/jm_portability.h

@@ -65,6 +65,7 @@ jm_status_enu_t jm_portability_get_current_working_directory(char* buffer, size_

 jm_status_enu_t jm_portability_set_current_working_directory(const char* cwd);

 /** \brief Get system-wide temporary directory */

+FMILIB_EXPORT

25.09.2020 public 8/12 8/12

 const char* jm_get_system_temp_dir();

 /**

@@ -118,6 +119,7 @@ jm_status_enu_t jm_mkdir(jm_callbacks* cb, const char* dir);

 /**

 \brief Remove directory and all it contents.

 */

+FMILIB_EXPORT

 jm_status_enu_t jm_rmdir(jm_callbacks* cb, const char* dir);

 /**

5. Create the build directory

> mkdir build

> cd build

6. Run CMake

> cmake -G “MinGW Makefiles”

 -DFMILIB_INSTALL_PREFIX=C:/OpenPASS/thirdParty

 -DCMAKE_BUILD_TYPE=Release

 -DFMILIB_BUILD_STATIC_LIB=OFF

 -DFMILIB_BUILD_SHARED_LIB=ON ..

7. Compilation

> mingw32-make

8. Installation

> mingw32-make install

9. Move the FMI Library headers (located in C:\OpenPASS\thirdParty\include) into a new subfolder

C:\OpenPASS\thirdParty\include\FMILibrary. The files/folders to be moved are: FMI, FMI1, FMI2, JM,

fmilib.h and fmilib_config.h.

5 Compiling openPASS

5.1 Using qmake

The variables EXTRA_LIB_PATH and EXTRA_INCLUDE_PATH are set to C:/OpenPASS/thirdParty/lib

and C:/OpenPASS/thirdParty/include by default. Please adapt the paths in the sim/defaults.pri

in case you are using different locations. It is also possible to pass these variables on the qmake command

line, which will then override the default values.

The file system structure for the thirdParty directory should look like this example:

- C:/OpenPASS/thirdParty

o bin

▪ protoc.exe

o include

▪ boost

▪ FMILibrary

▪ gtest

▪ …

25.09.2020 public 9/12 9/12

o lib

▪ libopen_simulation_interface.dll

▪ libfmilib_shared.dll

▪ …

When using the QMake build, protobuf Arena support is always enabled.

NOTE: On windows, path length limitations apply during building which often causes the build to fail. To

overcome this problem, it is recommended to copy the folder OpenPass_Source_Code directly to your

drive C: and rename it in order to have a short name (e.g. OP). Same applies to the build directory, which

can be changed under Projects → Build Settings → Build directory after opening the project

file. Alternatively, the subst command can be used as described in Prerequisites to shorten the path on the

filesystem.

Build the OpenPASS_OSI_UseCase.pro project to build the simulation core with all components and the

graphical user interface.

5.2 Using CMake

For compiling openPASS using CMake, the following command line instructions shall be provided as a

template.

Dependencies are expected in a different file system structure for CMake than for QMake. The file system

for the thirdParty directory should look like this example:

- C:/OpenPASS/thirdParty

o boost

▪ include

▪ lib

o osi

▪ include

▪ lib

o protobuf

▪ bin

▪ include

▪ lib

o …

Each dependency has it’s own, independent installation directory inside this tree.

Start from MinGW shell at the repository checkout directory:

1. Create build directory

> mkdir build

> cd build

2. Run CMake (the CMAKE_PREFIX_PATH variable has to list all dependency installation directories,

separated by semicolon).

> cmake -G "MinGW Makefiles" -D WITH_GUI=OFF -D

CMAKE_PREFIX_PATH=C:\Qt\Qt5.12.2\5.12.2\mingw73_64;

C:\os\deps\thirdParty\FMILibrary;

C:\os\deps\thirdParty\boost;

C:\os\deps\thirdParty\osi;

C:\os\deps\thirdParty\protobuf;

C:\os\deps\thirdParty\googletest

-D CMAKE_INSTALL_PREFIX=C:\OpenPASS\bin\Slave

25.09.2020 public 10/12 10/12

-D CMAKE_BUILD_TYPE=Release

-D USE_CCACHE=ON

-D OPENPASS_ADJUST_OUTPUT=OFF

-D WITH_DEBUG_POSTFIX=OFF

..

a. To disable protobuf Arena allocation, add “-D WITH_PROTOBUF_ARENA=OFF” to the

cmake call.

b. OPENPASS_ADJUST_OUTPUT and WITH_DEBUG_POSTFIX provide mechanisms to control

build file placement and debug binary naming. The settings shown should be changed by

developers only.

3. Compilation

> mingw32-make -j3

4. Installation

> mingw32-make install

5. IMPORTANT Recent changes to the CMake build system will put the OpenPassSlave executable

inside a ‘bin’ subfolder in the CMAKE_INSTALL_PREFIX. The core itself is not yet adjusted to this

layout, so we need to move the files.

> cd C:\OpenPASS\bin\Slave

> move bin*.* .

6 Simulation

There are multiple demo scenarios located at sim/contrib/examples. You can copy the configs folder of

a scenario to the openPASS installation directory and run OpenPassSalve.exe without additional

command line arguments. Results will be placed in ‘results’.

Alternatively, you can provide the location of the config files to the simulator on the command line using the

--configs switch.

NOTE: Remember to copy the required third-party libraries (see table below) to the directory, where the

OpenPassSlave.exe is located. Dependency locations during runtime are (mostly) independent from

compile-time locations. Alternatively, you can add a directory containing these libraries to the PATH

environment variable. When using the cmake build, the dependencies used during linking will be copied to

the installation folder automatically.

Required third party libraries Location to get the libraries from

libprotobuf.dll

libopen_simulation_interface.dll

libfmilib_shared.dll (optional)

C:\OpenPASS\thirdParty\lib

Qt5Xml.dll

Qt5Core.dl
Qt install directory (e.g.

C:\Qt\Qt5.12.2\Tools\QtCreator\bin)

25.09.2020 public 11/12 11/12

libwinpthread-1.dll

libstdc++-6.dll

libgcc_s_seh-1.dll

MinGW install directory (e.g. C:\Qt\mingw-
w64\x86_64-8.1.0-posix-seh-rt_v6-

rev0\mingw64\bin)

25.09.2020 public 12/12 12/12

7 References

[1] https://github.com/OpenSimulationInterface/open-simulation-interface

[2] https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/subst

[3] https://developers.google.com/protocol-buffers/docs/reference/arenas

[4] https://github.com/protocolbuffers/protobuf/releases

[5] https://cmake.org/files/v3.9/

[6] https://www.boost.org/

[7] https://sourceforge.net/projects/boost/files/boost/

[8] https://github.com/google/googletest

[9] https://sourceforge.net/projects/mingw-w64/

[10] https://git.eclipse.org/r/#/admin/projects/simopenpass/simopenpass

[11] https://github.com/modelon-community/fmi-library

[12] https://github.com/modelica-tools/FMUComplianceChecker

https://github.com/OpenSimulationInterface/open-simulation-interface
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/subst
https://developers.google.com/protocol-buffers/docs/reference/arenas
https://github.com/protocolbuffers/protobuf/releases
https://cmake.org/files/v3.9/
https://www.boost.org/
https://sourceforge.net/projects/boost/files/boost/
https://github.com/google/googletest
https://sourceforge.net/projects/mingw-w64/
https://git.eclipse.org/r/#/admin/projects/simopenpass/simopenpass
https://github.com/modelon-community/fmi-library
https://github.com/modelica-tools/FMUComplianceChecker

